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Abstract
We present a toolbox to probe quantum many-body states implemented on Rydberg-atoms
quantum hardware via randomized measurements. We illustrate the efficacy of this measurement
toolbox in the context of probing entanglement, via the estimation of the purity, and of verifying a
ground-state preparation using measurements of the Hamiltonian variance. To achieve this goal,
we develop and discuss in detail a protocol to realize independent, local unitary rotations. We
benchmark the protocol by investigating the ground state of the one-dimensional
Su–Schrieffer–Heeger model, recently realized on a chain of Rydberg atom, and the state resulting
after a sudden quench in a staggered XY chain. We probe the robustness of our toolbox by taking
into account experimental imperfections, such as pulse fluctuations and measurement errors.

1. Introduction

Synthetic quantum systems, composed of, e.g. neutral atoms [1, 2], ions [3], superconducting qubits [4],
allow us to engineer spin-lattice models or implement quantum algorithms on qubit registers, with precise
control over geometry and interactions. Among these platforms, Rydberg atoms have emerged as a
promising system. They can be described in good approximation in terms of qubits, with the spin-up state
| ↑⟩ ≡ |1⟩ encoded by a Rydberg state, and the spin-down | ↓⟩ ≡ |0⟩ encoded by another Rydberg state, or an
atomic ground state [2]. One of the most relevant assets for Rydberg quantum technologies is the long qubit
lifetime, which scales as n3, where n∼ 50− 100 is the atom principal quantum number. In addition,
interactions between Rydberg qubits are naturally obtained via the dipole–dipole interactions, whose
characteristic energy scales as n4 in the resonant regime, and n11 in the off-resonant van der Waals regime.
Finally, Rydberg atoms can be placed on almost arbitrary geometries using optical forces generated, e.g. by
optical tweezers [5]. In particular, recent experimental progresses in this direction allowed to experimentally
study strongly correlated quantum states with hundreds of qubits in two dimensional lattice models [6, 7].
On the quantum computing side, Rydberg atom platforms have demonstrated remarkable performances in
terms of scalability, connectivity, and gate fidelities [8–10].

In order to take advantage of all the promising aspects of Rydberg atoms for quantum technologies, it is
desirable to equip such platforms with ameasurement toolbox to extract key physical quantities, such as
fidelities and entanglement, and in a state-agnostic way. A promising approach in this context consists in
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Figure 1. Pictorial representation of the randomized measurements toolbox. Starting from a separable state (all sites in | ↓⟩), an
adiabatic state preparation P is applied to implement the target state of interest |ψ0⟩ [11]. Then, we randomly choose and apply
local unitaries for each lattice site, repeating the protocol for NU samplings. For each sampling Ui, we estimate the probabilities
PUi (s) (see equation (2)) estimating the Hamiltonian variance of |ψ0⟩ and the purity of system bipartitions with size ℓ.

using randomized measurements (RMs) based on performing random single-qubit rotations followed by
measurements in the computational basis [12–14] (see figure 1).

RMs [15] have been used to estimate the purity and the second Rényi entropy S2 =− logTr[ρ2] of
(sub-)systems consisting of up to ten qubits in a trapped ion [16–19] and superconducting qubit quantum
simulator [20, 21]. An alternative purity estimator can be obtained via the classical shadows formalism [14,
18] (see also below). In addition, it has been proposed to use RMs to reveal other properties of many-body
quantum states. This concerns for instance the fidelity of quantum states realized in different
experiments [18, 22] and versus an ideal theoretical target state, as well as many-body topological invariants
associated with (symmetry-protected) topological phases [23, 24]. Moreover, beyond the immediate
opportunity to extract via RMs entanglement entropies and related quantities for quantum simulation, our
toolbox enables the measurement of arbitrary observables based on the classical shadow formalism [14]. This
is in particular relevant in the context of variational quantum optimization algorithms [25, 26], where an
observable cost function is repetitively measured.

In the aforementioned ion implementation of the local random unitaries, interactions were absent
during the local rotations protocol. Analogously, recent Rydberg atom quantum simulation and
computation platforms exploit a qubit implementation in which the |0⟩ and |1⟩ states correspond to
hyperfine ground states [10, 27–30]. In this case, it is possible to locally manipulate the quantum many-body
state in the absence of atom–atom interactions.

In this work, we answer the question of whether the local unitaries apparatus can also be exploited in
cases when the atom–atom interactions cannot be avoided. To do so, we equip an interacting Rydberg atom
quantum simulator with a tailored RM toolbox based on local unitaries, i.e. spin qubit rotations. Despite the
protocol we present constitutes a receipt tailored for a particular Rydberg atom setup, it nevertheless
demonstrates that the local unitaries apparatus can also be extended to the case of qubits where interactions
cannot be turned off. Our approach complements a recent work employing quasi-local ‘scrambled’ unitaries
generated by Rydberg interactions and used for benchmarking and fidelity estimation [31]. Our approach
fully relies on experimental tools that are currently available. It consists in implementing RMs via random
single-qubit rotations combining local light shifts and time-varying global microwave drives to the atoms.
Our approach proposes directly operating on the Rydberg manifold, allowing to realize random single qubit
rotations in parallel, i.e. with a duration that does not scale with the number of qubits. One can also
straightforwardly adapt our protocols for hyperfine state qubits, e.g. replacing microwave drives by Raman
pulses.

Importantly, we show that the effects of the interactions between Rydberg atoms during the generation of
such single-qubit rotations can be made negligible using an optimized pulse sequence for the different drives.
We illustrate the use of the RM toolbox for the measurement of the purity p2 [giving access to the
entanglement Rényi entropy S2 =− log2(p2)] in the Su–Schrieffer–Heeger (SSH) model, and of the
Hamiltonian variance, which can be used to verify experimentally ground state preparation [14, 32]. We also
estimate the purity of a state resulting from the dynamics after a sudden quench with a staggered XY model.
Our simulations take into account the most important realistic error sources and analyze the role of statistical
errors. We conclude that RMs can be implemented via the presented approach in existing Rydberg platforms.

In the following, we describe our general RM toolbox in section 2 and propose an experimental
implementation in section 3. In section 4, we illustrate our approach in the context of characterization of
topological phases with entanglement entropies. We also show the measurement of the Hamiltonian variance
of the SSH model, in order to verify the adiabatic preparation of the ground state.
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2. Local random unitaries toolbox

2.1. Probability estimation
RMs provide a powerful toolbox to investigate the properties of quantum many-body systems beyond
standard low-order correlation functions [12–14, 16, 18, 23, 24, 33–46]. In the following, we outline the RM
protocol employing local (single-spin) random unitary operations. To this end, we consider a quantum state
ρ defined on a lattice of qubits with size L and associated Hilbert space of dimension 2L. We denote its
computational z-basis with {|s⟩} with bitstrings s= (s1, . . . , sL) and sm = 0,1 form= 1, . . . ,L. A RM
comprises the following steps: (i) a random unitary U=

⊗L
m=1 um is applied to ρ, where each um is sampled

independently from an appropriate ensemble of local (single-spin) unitary transformations, typically a
unitary 2-design [47, 48]. Examples of such unitary 2-designs include continuous single-spin rotations
which cover the Bloch sphere of each spin uniformly [the Haar measure on the unitary group U(2)] as well
as the (discrete) single-qubit Clifford group [47, 48]. (ii) This is followed by a measurement in the
computational z-basis with outcome bitstring s= (s1, . . . , sL). This sequence is then repeated with the same
unitary U to obtain an estimate of the probabilities PU(s) = Tr

[
UρU†|s⟩⟨s|

]
, and subsequently with newly

sampled unitaries to estimate the average over the ensemble of unitary transformations. We denote the
number of repetitions with the same random unitary with Nmeas and the number of applied unitaries U with
NU such that the rotations protocol is repeated Ntot = NU ×Nmeas times in total.

In this work, we choose to use local random unitary operations um which are sampled from the discrete,
finite single-qubit Clifford group U(2). Since for RMs, the application of a random unitary is directly
followed by a computational z−basis measurement in the z-direction, the application of randomly sampled
single-qubit Clifford gates is equivalent to sampling the Lmeasurement directions vm among a finite set of
three mutually orthogonal directions, as for example {x,y,z} (see [14]). In this case, the corresponding set of
transformations is R= {e−iπ/4σy ,e−iπ/4σx ,1}, that rotates each direction onto the measurement axis z.

2.2. Purity estimation
A key application of RMs is the estimation of the purity of quantum states to characterize the coherence of
the underlying quantum device and to reveal entanglement [12–14, 16, 33, 35, 49]. In the following, we
consider a system with size L and with basis {s}, and a sub-system A with size NA. The purity Tr

[
ρ2A

]
of the

reduced density matrix ρA of A can be estimated, following the procedure presented in [16, 35]. Given the
estimates of the probabilities PU(s), one obtains estimates of the probabilities PU(sA) =

∑
s|A=sA PU(s) of

computational basis states |sA⟩ for any subsystem A via post-processing. Then, the purity Tr
[
ρ2A

]
is obtained

from second-order correlations of the probabilities PU(sA) via

Tr
[
ρ2A

]
= 2NA

∑
sA,s ′A

(−2)−D[sA,s ′A]PU (sA)PU (s ′A) . (1)

Here, D[sA,s ′A] denotes the Hamming distance of the bitstrings sA and s ′A and . . . the ensemble average over
the local random unitaries. Equation (1) represents an exact relation in the limit of Nmeas →∞ and when the
local random unitaries are averaged over a complete unitary 2-design. In practice, statistical errors arise from
a finite number of measurements Nmeas per unitary and a finite number NU of local random unitaries
sampling the ensemble average. Numerical and analytical analysis of such statistical errors showed that the
total number of experimental runs NUNmeas to estimate the purity with high confidence and probability
scales approximately as 2bNA with b≈ 1. The exact value of b and the optimal ratio NU/Nmeas depends on the
state of interest and the required precision. We note that this represents a substantial improvement compared
to full quantum state tomography, requiring at least 2b

′NA experimental runs with b ′ ≳ 2 (see e.g. [50]). The
scaling of statistical errors with system size can furthermore be substantially improved via importance
sampling [49].

2.3. Estimating expectation values of arbitrary observables
The same RM data can be used to estimate expectation values Tr [Oρ] of arbitrary observables O [14].
Utilizing the tomographic completeness of RMs [14, 35, 51], the expectation value of arbitrary observables O
can be obtained via

Tr [ρO] = 2N
∑
s,s ′

(−2)−D[s,s ′]PU (s)⟨s ′|UOU†|s ′⟩. (2)

Differently from equation (1), this expression is linear in the experimentally estimated outcome probabilities
PU(s). Hence, the procedure to estimate expectation values Tr [ρO] is as follows: In the experiment, we
estimate outcome probabilities PU(s) = ⟨s|UρU†|s⟩, as in the case of the purity estimation. On a classical
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computer, we calculate the corresponding matrix elements ⟨s|UOU†|s⟩ (for the same unitaries U which have
been applied in the experiment). Then, we cross-correlate according to equation (2).

Observable estimation with RMs has been formalized and rigorous error bounds have been obtained via
the classical shadows formalism [14]. There, it has been shown that statistical errors depend on the set of
observables O of interest. Below, we consider the specific case of O=H (O=H2) with H being a
Hamiltonian with k-body interactions. Then, in the limiting case Nmeas = 1, NU ∼ 2k log(N)
(NU ∼ 22k log(N2)) random unitaries are required to estimate Tr [Hρ] (Tr

[
H2ρ

]
) with high confidence and

probability [14]. This number can be substantially further decreased using derandomization techniques [52].
We furthermore note that the equation (2) can be generalized to estimate expectation values of arbitrary
multi-copy observables [14]. This enables, for instance, the detection of mixed state entanglement via
higher-order moments of (the partial transpose) of the density matrix ρ [18] (see also [38]), of
symmetry-resolved entanglement entropies [53], and of the quantum Fisher information [41].

In contrast to the purity estimation formula, in equation (2) we utilize explicitly the knowledge of the
random unitaries U to calculate the required matrix elements ⟨s|UOU†|s⟩. Thus, any miscalibration between
the local random unitaries actually applied in the experiment and those applied on the classical computer
affects the estimation of Tr [ρO] [37, 54]. We will discuss the influence of such implementation errors in
detail below. In addition, the robustness can be improved via calibration experiments with simple states
which can be prepared with high fidelity [52, 54, 55]. In the next section, we describe our Rydberg quantum
optics model, and the corresponding implementation of RMs.

3. Proposal to experimentally implement the RMs toolbox

3.1. The model
We consider an array of atoms (either one-dimensional as shown here, or two-dimensional), made to
interact by exciting them to Rydberg states [2]. In particular, we focus on the setup used to observe
symmetry-protected topological phases in a SSH chain (see, e.g, [11]). By encoding pseudo-spin-1/2 states
in two dipole-coupled Rydberg levels (such as nS for | ↓⟩ ≡ |0⟩ and nP for | ↑⟩ ≡ |1⟩, with n∼ 60), the
dipole–dipole interaction at work between the atoms implements the XY spin Hamiltonian∑

i<j Jijσ
+
i σ

−
j + h.c., with J ij decaying as 1/r3ij with the distance rij between the atoms i and j, and

σ± = (σx ± iσy)/2 are linear combinations of the usual Pauli matrices.
To manipulate the internal spin states and thus implement local rotations, we start from the experimental

setup used in [11], sketched in figure 2. In particular, we can first manipulate them globally by using
microwave pulses with a Rabi frequency Ω(t) and a detuning∆(t). For localmanipulation, we add a local
light shift with a tightly focused laser beam (for instance coupling off-resonantly the nS state to a low-lying P
state such as the 6P state for Rb) on a selected atom in order to tune the qubit frequency into (or out of)
resonance with the microwave field [56]. A spatial light modulator (SLM) is used to program at will the
spatial dependence of these addressing beams, while the (global) time dependence f (t) of the intensity of the
addressing beams is set with an acousto-optic modulator, placed before the SLM, and that allows for the
generation of fast pulses.

By taking all the available terms into account, the experimental Rydberg Hamiltonian describing the local
transformations is

Hprot (t) =
L∑

m=1

[
Ω(t)

2
σx
m − [∆(t)− f(t)δαm ]nm

]
, (3)

where σα
m are the Pauli matrices acting on sitem ∈ [1,L], αm ∈ {1,2,3} and nm = (σz

m + 1m)/2.
During the application of the rotation protocol, the state is evolving under the total Hamiltonian

H(t) =Hprot (t)+Hmod , (4)

where Hmod is the static model Hamiltonian describing the interactions between Rydberg atoms, see
equation (6) below. The interaction terms can create spurious correlations between the local rotations and
affect the estimation of the probabilities PU(s). In the following, we determine the pulses of the rotation
protocol after fixing the maximum amplitude of the Hamiltonian Hmod parameters J to be<1MHz.

3.2. Experimental proposal
In the following, we exploit the Hamiltonian Hprot(t) to simultaneously implement three transformations
R= {R1,R2,R3} that rotate the measurement axis z onto three mutually perpendicular directions. First, we
consider the idealized limit of very short protocol time T (i.e. JT≪ 1, to neglect the influence of
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Figure 2. The experimental scheme under consideration. The atoms in the tweezers array (here in one dimension) are used to
encode a pseudo-spin 1/2 in two Rydberg states nS and nP. Global manipulation of the spin states is achieved using microwave
driving with Rabi frequencyΩ(t) and detuning∆(t). Additional, site-dependent detunings δαm with a global time dependence
f (t) are obtained by using a light-shifting laser beam, controlled by an acousto-optic modulator (AOM) and a spatial light
modulator (SLM), to couple off-resonantly the nS state to a low-lying state (such as the 6P state for Rb atoms).

interactions) and an arbitrarily large detuning∆(t)much larger than the Rabi frequency Ω(t). The local
potentials f(t)δαm ∼∆(t) are fixed to implement the different rotations. In this limit, we can present
analytical pulse sequences to realize R= {e−iπ/4σx ,e−iπ/4σy ,1} exactly. We consider constant, square pulses.
The Rabi frequency pulse Ω(t) has a duration of T. It implements two successive π/2 rotations and satisfies
the condition Ω(t)T/2= π/2. Instead, the detuning term∆(t) is null in the first half of the protocol, while
we set∆(t)T/2= π/2 in the second half (this choice will be clarified in the following).

The transformation R1 is implemented by setting Tf(t)δ1 = 0. During the first half of the total time
interval T, we have T∆(t) = 0 and the Rabi frequency term implements a π/2 pulse. In the second half-time,
the detuning pulse by∆(t)≫ Ω(t) shifts the transition between the two levels off-resonant. Note that the
∆(t) pulse adds a phase that does not affect the measurement along the z axis. In order to implement the R2

transformation, we decompose the rotation around the y axis into the sequence of rotations
e−iπ/4σze−iπ/4σxeiπ/4σz . Then, we ignore the last σz rotation which does not influence the final measurement
outcome, and resulting in the rotations e−iπ/4σxeiπ/4σz to be implemented. The rotation around z is realized
by setting Tf(t)δ2/2= π/2, with f(t)δ2 ≫ Ω(t), in the first half of the protocol. In the second half, the choice
of∆(t) realizes the condition∆(t)− f(t)δ2 = 0, and the pulse Ω(t) implements the rotation around x.
Finally, the rotation R3 is realized by the pulse with amplitude f(t)δ3 ≫ Ω(t) in the first half of the protocol
and∆(t)− f(t)δ3 ≫ Ω(t) in the second half (recall that T∆(t) = 0 during the first half of the protocol). The
effects of Ω(t) can be neglected as the pulse f(t)δ3 always guarantees the off-resonance condition.

Starting from this ideal setting described above, we now assess the role of finite time preparation and
amplitude parameters. We keep the same general pulse sequence and investigate whether it implements the
required transformations R with high fidelity. In particular, the pulses implemented by the functions Ω(t)
and∆(t) are the same in all three cases, while the amplitudes δα can be different and are set to three values
δ1, δ2, δ3. The figure of merit we use to search the pulses is

Aα (R) = |εαβγ⟨↑ |RβR
†

γ | ↑⟩|2 = 1 α ∈ {1,2,3} , (5)

where ε is the antisymmetric Levi-Civita tensor, and indexes β, γ are implicitly summed. The σz eigenstate
| ↑⟩ is one of the two possible measurement outcomes. Note that for short pulses, larger than the interactions
strength, we compute the figure of merit on one-site rotations, independently on the size of the system. We
numerically investigate the role of interactions below. To test each parameters choice, we consider Ntot = 105

copies of the local protocols and add random fluctuations in each pulses realization. We model them as
independent Gaussian fluctuations. We assume their variance to be proportional to the pulse amplitude
through the percentage coefficient ε% = 3 (the effect of considering different coefficients will be analyzed in
the following). As a result, we obtained the protocol R∗ shown in figure 3, for whichAk(R∗)/2=
{0.55± 0.06, 0.56± 0.05, 0.58± 0.04}.

On the one hand, we chose the shape of the pulses to optimize the figure of meritAα(R) defined in
equation (5). On the other, we determined their duration and amplitude to minimize the effects of
interactions. By fixing the total phase of the pulses, we balanced between the minimum duration of the pulse
and the maximum pulse increasing speed. We got a rotation protocol time TR ≃ 0.15µs, with the largest
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Figure 3. Pulses relative to the uniform (a) detuning∆(t) and Rabi couplingΩ(t) and to the space dependent detunings f(t)δα
(b). The amplitudes δα change to realize the three different rotations R∗.

pulse amplitude of∼7MHz and an increasing speed of∼35Mhz/10ns. The condition TR ≪ 1/Je ≃ 2µs,
with Je being the largest coupling in the Hamiltonian defined in section 4.1, allows to control the interactions
spurious effects.

To benchmark the rotations R∗, we consider the SSH chain with size L. Each random unitary U is
sampled by randomly attributing to each atomm a label αm = 1,2,3 with equal probability 1/3,
corresponding to a parametrization of the system with light shift f(t)δαm . To make our analysis realistic, we
include measurement errors. In particular, we assume the probability of errors occurring during the readout
process. We model them as a 1% error to detect a false | ↑⟩ state and 3% error to detect a false | ↓⟩ state [57].
We set Ntot = NU ×Nmeas < 105 to make our estimations compatible with experimental typical capabilities.

4. Numerical illustration with the SSHmodel

4.1. Presentation of the model andmeasured quantities
As a testbed, we consider the SSH 1D chain described by the Hamiltonian

Hmod =−Je
∑
evenx

σ+
x σ

−
x+1 − Jo

∑
oddx

σ+
x σ

−
x+1 +H.c.+Hnnn (6)

with (Je, Jo) = (0.484,−0.18)MHz. By arranging the atoms as in [11], next-nearest neighbor interactions are
suppressed, while Hnnn =−Jnnn

∑
xσ

+
x σ

−
x+3 +H.c. describes spurious next–next nearest neighbor exchange

terms, with Jnnn ≃ 0.04MHz. We neglect residual van der Waals interactions between excited atoms, while we
artificially break the degeneracy of the ground state by adding a local chemical potential term to one of the
extreme sites of the chain. Starting from the experimental realization of this model Hamiltonian, we apply
the toolbox, and show that we can access particular entanglement entropies and Hamiltonian variances.

The model ground state exhibits two phases, a topological one for |Je| ≫ |Jo|, with localized edge
excitations, and a trivial one for |Jo| ≫ |Je|. In both phases, the ground state bulk is composed by separable
nearest-neighbors dimers sharing one excitation. The dimers form on those sites connected by the stronger
interaction term leading, in the topological phase, to the localized boundary excitations. Figure 4(a) shows
the two phases for the SSH model ground state, with thicker lines indicating the stronger coupling. Given a
system bipartition with size ℓ, the purity of the reduced density matrix can assume two values: they are
ps = 1, if the boundary does not cross any dimer and ρℓ describes a pure state, and pd = 1/2, if the boundary
crosses a dimer: measuring the purity of a given subsystem allows to distinguish the topological from the
trivial phase. Moreover, RMs can also be used to extract the quantized topological invariants [23, 58].

Finally, we benchmark the ground state preparation by measuring the Hamiltonian variance

⟨∆H2
mod⟩= Tr

[
ρH2

mod

]
−Tr [ρHmod]

2
. (7)

In the results, we show the renormalized quantity ⟨∆H2⟩= ⟨∆H2
mod⟩/⟨H2

mod⟩. We first consider the exact
ground state |GS⟩, for which ideally we would measure∆H2

mod = 0, neglecting the effects due to the state

preparation process. Then, we benchmark the rotation protocol on the state |G̃S⟩= P[| ↓ . . . ↓⟩], where P is
the adiabatic state preparation protocol presented in [11] and the initial state is a fully ferromagnetic one. We
also compare the variances obtained for the ground states |GS⟩ and |G̃S⟩ with that of a separable
anti-ferromagnetic state |AF⟩= | ↑↓ . . .⟩.

4.2. Numerical results
We benchmark now the set of rotations R∗. We start our analysis by considering the exact ground-state, with
three different scenarios. In the first, we apply the rotation protocol by evolving the ground-state with the
pulses shown in figure 3. We consider only the Hamiltonian Hprot, thus for the moment ignoring
interactions. Moreover, we do not add any fluctuations and the probabilities PU(s) are computed exactly. We
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Figure 4. (a) SSH model ground state for L= 8 and ℓ= L/2, in the trivial (left) and in the topological (right) phases. Thicker
lines indicate the larger interaction terms and thus where dimers form. Thus, the purity is≃1/2(1) in the topological (trivial)
phase. (b) Purity for different values of L obtained with the rotation protocol R∗ ignoring the interactions and every error source.
We consider the topological ground state for L= 8, 12 (squares) and the trivial one for L= 6, 10 (triangles). The dashed lines
represent the expected values corresponding to Tr[ρ2ℓ] for ℓ= L/2, L/2+ 1. The error bars are the standard deviation computed
over 20 repetitions of the protocol. (c) Estimation of the energy variance renormalized with respect to the ground state energies
for each value of L. (d)–(e) Estimation of the purity and the Hamiltonian variance for L= 8 by applying the rotation protocol R∗

with random fluctuation for different relative amplitude of the fluctuations ε%. The fluctuations change at each unitary
transformation sample. We set NU = 100.

compute the exact ground state |GS⟩ for different sizes L and estimate the purity p2 of the reduced density
matrix ρℓ for a bipartition with sizes ℓ= L/2,L/2+ 1 (see figure 4(b)). We fix the number of global unitary
samplings NU = 100 and repeat the whole process Nave = 20 times. All the results shown hereafter are
averaged over these repetitions and the error bars are estimated by taking the standard deviation. In
figure 4(b) the two expected values of the purity pd and ps are distinguishable within the error bars for all the
values of L. The colors indicate the size ℓ of the bipartition, while we use squares (triangles) for
L= 8,12(6,10) to indicate that the ground state has been prepared in the topological (trivial) phase. The
error bars we observe show the robustness of our protocol for different system size for the chosen number
NU. Furthermore, we estimate energy fluctuations, as shown in 4(c). Note that the relations of equations (1)
and (2) do not satisfy physical bounds, such as 1≥ Tr[ρ2]> 0 or positivity, therefore purity values larger
than one or negative fluctuations can be encountered.

We then add Gaussian pulse fluctuations with different amplitudes to check the impact of noise in the
protocol implementation. We fix L= 8 and repeat the estimations shown above. We still do not consider
interactions and compute the probabilities PU(s) exactly. The results shown in figure 4(d) for the purity and
in figure 4(e) for the Hamiltonian variance respectively are in good agreement with the expected values. The
error bars concerning the purity estimations allow to distinguish between pd and ps. These simulations
provide a fundamental benchmark for future experiments, as they prove the robustness of the toolbox
against imperfect pulse realizations.

Finally, we simulate the experimental protocol, evolving the ground state with the full Hamiltonian H(t)
defined in equation (4), thus, considering the Rydberg interactions. The Hamiltonian Hprot(t) is perturbed
with Gaussian pulse fluctuations at each repetition of the protocol. Moreover, we estimate the probabilities
P̃U(s) by simulating the measurement process and including measurement errors. In figure 5, we fix L= 8
and estimate (a) the purity and (b) Hamiltonian variance for a maximum number of unitary transformation
samples NU = 100. For each unitary sample, we repeat the process Nmeas = 400 times to estimate the state
probability amplitudes P̃U(s) in the measurement basis. The values we obtain for the purity are well
separated within the error bars. Thus, they allow us to distinguish between partitions with odd and even size,
at a fixed state, or alternatively between the topological and trivial phase at fixed partition size. Note that the
effect of noise during the measurements tends to slightly reduce the estimation of the purity, i.e. the state
appears as more mixed compared to a perfect measurement sequence, as a consequence of decoherence. If
needed, this effect can be removed using rescaled probabilities based on calibration experiments [20, 21, 33].
The inset in figure 5(a) shows the expected inverse square-root scaling of the standard deviation of the
estimated purities. Note that, when measuring purities, we take into consideration the statistical bias
occurring from the estimation procedure of the probabilities P̃U(s)P̃U(s ′) [35]. In particular, the unbiased
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Figure 5. The experimental protocol is applied to the SSH ground state |GS⟩ to estimate the purity (a) and the Hamiltonian
variance (b) as a function of the number of sampled unitaries NU. We consider the topological phase and L= 8. We plot the
average over 20 repetitions of the full estimation process (for each repetition we prepare the target state and evolve under Htot(t)
for Nmeas ×NU times). The colored areas correspond to the standard deviations. The inset shows square-root decreasing of the
standard deviation of Tr[ρ2ℓ] for ℓ= L/2. Analogous behaviors are observed for ℓ= L/2+ 1 and for the energy fluctuations. The
Hamiltonian variances are computed both for the ground state and for a separable, antiferromagnetic state. All energy variances
are renormalized with respect to the respective ground state energies. The dashed lines show the exact values for the purities (a)
and the variances (b). To estimate the probabilities we setNmeas = 400. We set the relative variance of pulse fluctuations ε% = 3%.

Figure 6. (a) Estimation of the purity (up to L= 14) and (b) the energy variance (L= 6,8) via the experimental protocol. The
systems is respectively prepared in the trivial phase (L= 6,10,14) phase) and in the topological one (L= 8,12). Squares and
triangles are used to distinguish between the topological and trivial SSH ground states while pentagons refer to the
antiferromagnetic state. (c)–(d) Test of the experimental protocol robustness as a function of Nmeas for L= 8.
L= 6,8 : NU = 100,Nmeas = 400. L= 10,12,14 : NU = 50,Nmeas = 800. ε% = 3%.

purity Tr[ρ2] = xNmeas/(Nmeas − 1)− 2ℓ/(Nmeas − 1), where x is the biased result obtained from directly
inserting the estimate P̃ into equation (1).

In the estimation of the Hamiltonian variance, we compare the value relative to the model ground state
with that of an antiferromagnetic separable state. The obtained values are separated within the error bars,
confirming once again the robustness of our RM toolbox to distinguish between states with different
properties. We execute this procedure for L= 6, . . . ,14, as shown in figures 6(a) and (b). Furthermore, we
benchmark our toolbox by changing the number of measurements Nmeas for each global unitary sample. We
consider the cases with L= 8. In figures 6(c) and (d), we observe that the results obtained for different values
of Nmeas do not differ substantially, allowing us to consistently reduce the number of required iterations of
the protocol for small lattice sizes.

As an application of the measurement of the energy variance, we show that the protocol can be used to
check the adiabatic preparation of the ground state. We consider the adiabatic sequence presented in [11],
suitably scaled to the interaction strength adopted here. We obtain an imperfect ground state |G̃S⟩ for
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Figure 7. The purity (a) and the Hamiltonian variances (b) are estimated for the state |G̃S⟩= P[⊗| ↓⟩i, where P is the protocol
presented in [11], as a function of the preparation time TP for L= 8, NU = 100, Nmeas = 400, ε% = 3. In (a), continuous lines

show the expected purities relative to |G̃S⟩, while the dashed ones correspond to the values relative to the exact ground state. In

the log-scale plot (b), the continuous lines show the expected variances relative to |G̃S⟩.

Figure 8. The purity respect to the bipartition of size ℓ is estimated for a state evolved for T= 1µs after a sudden quench. The
dashed lines show the exact values. Numerical parameters: L= 8, NU = 50, Nmeas = 800, Nave = 10.

different preparation times TP and compute the purities and the Hamiltonian variances for L= 8. In figure 7,
we report the purities (figure 7(a)) and the Hamiltonian variances (figure 7(b)) relative to the experimental
numerical simulation as a function of TP. In figure 7(a), the dashed lines represent the values for the purities
computed on the exact ground state |GS⟩, while the continuous ones correspond to the imperfect ground
state |G̃S⟩. As expected, the preparation protocol is not adiabatic for shorter processes, and the ground state
properties are affected. The low interaction strengths we considered here require∼10µs to prepare the
ground state. On the one hand, such a time scale also requires to consider incoherent effects. On the other
hand, optimal control techniques allow to go beyond adiabatic protocols for state preparations and adopt
faster ones [59, 60].

Finally, we test the our protocol in a different scenario. First, we set Je =−Jo = 0.18MHz in the
Hamiltonian in equation(4), implementing a staggered XY model. Then, we consider the separable L= 8
state with all spins down, except a single spin up the middle of the lattice. By evolving the system for a time
T= 1µs, the domain wall spreads over the lattice until it reaches the boundary of the lattice. We measure the
purity for different bipartitions of the lattice. The purity values estimated for different subsystem sizes
ℓ= 1, . . . ,L/2 are shown in figure 8. The values obtained from the protocol are compared with the exact one,
represented by the dashed lines. We notice that the estimated values capture the entanglement growth as the
subsystem boundary is shifted toward the center of the lattice. This result shows that our protocol can be
used to infer different entanglement profiles in lattice models.

5. Conclusion

We have proposed a protocol to implement simultaneous local, independent unitary rotations in an
interacting Rydberg quantum simulator. To benchmark it, we have investigated the ground state properties of
the SSH chain and the XY model after a sudden quench. We have shown the effectiveness of the local random
unitary rotations protocol, despite the presence of interactions. It allows us to estimate quantities such as the
purity of a system bipartition and the Hamiltonian variance, taking into account realistic experimental
parameters, the influence of residual interactions, and imperfections such as finite read-out fidelities. The
presented results provide a complete RM toolbox to probe entanglement [13, 16, 18], many-body topological
invariants [23] and quantum state fidelities [37], but also to measure any quantum observable from classical
shadows [14], in Rydberg quantum simulators and quantum computers.
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