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Quantum simulation of generic spin-exchange models in Floquet-engineered Rydberg-atom arrays
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Although quantum simulation can give insight into elusive or intractable physical phenomena, many quantum
simulators are unavoidably limited in the models they mimic. Such is also the case for atom arrays interacting
via Rydberg states, a platform potentially capable of simulating any kind of spin exchange model, albeit
with currently unattainable experimental capabilities. Here, we propose a route towards simulating generic
spin-exchange Hamiltonians in atom arrays, using Floquet engineering with both global and local control.
To demonstrate the versatility and applicability of our approach, we numerically investigate the generation of
several spin-exchange models which have yet to be realized in atom arrays, using only previously demonstrated
experimental capabilities. Our proposed scheme can be readily explored in many existing setups, providing a
path to investigate a large class of exotic quantum spin models.
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I. INTRODUCTION

Quantum simulation [1,2] is a promising technology for
solving complex problems [3] and performing optimization
[4] beyond the capabilities of classical computers. For the
past 20 years, quantum simulation has managed to expose the
behavior of matter during phase transitions [5] and in extreme
out-of-equilibrium scenarios [6–8], emulate relativistic [9] or
gravitational [10] effects, and accurately calculate molecular
properties [11,12]. Though many quantum systems can, in
principle, be employed for quantum simulation [13], neutral
atoms have emerged as a leading platform for this purpose
[14], given their long coherence times and the ability to ac-
curately control their quantum state optically, electrically, and
magnetically.

Traditionally, quantum simulation with neutral atoms was
performed utilizing their controlled collisions in an ensemble
[15–18] or the interplay between their tunneling and on-site
energies in an optical lattice [19–25]. In recent years, however,
more focus has been given to atom arrays [26], assortments
of single atoms [27] or atom clouds [28] with a controllable
one-dimensional (1D) [29], two-dimensional (2D) [30], or
three-dimensional (3D) [31] geometry. In atom arrays, the
simulated Hamiltonian is usually based on exciting the atoms
to Rydberg states [32] and inducing an effective spin exchange
via van der Waals [33–35] or resonant dipole-dipole [36–38]
interactions. This rapidly developing architecture has already
been used to design and build quantum computers [39,40],
simulate intractable quantum phases [41–44], and explore
topological properties of matter [45,46].

Atom arrays have also been proposed as a candidate system
to simulate any type of spin model [47]. However, even with
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recent advances towards this goal [48–50], no realization of
this proposal has thus far been presented. Indeed, atom arrays
(and any contemporary quantum simulator, in this regard)
can only simulate specific spin exchange Hamiltonians [51].
Therefore, certain important physical phenomena, such as chi-
ral topological solitons [52,53] or Majorana edge modes [54],
are still impossible to controllably generate in experiment.

Here, we propose a scheme using Floquet engineering
[55,56] of atom arrays for analog quantum simulation of
generic spin-exchange Hamiltonians [57]. Our scheme is
based on the periodic application of global [58] and local [59]
temporal modulation to atoms interacting through resonant
dipole-dipole interaction, effectively generating any desired
spin exchange. Using exact diagonalization (ED) and matrix
product state (MPS) simulations, we showcase the versatility
of our scheme by producing controlled Dzyaloshinskii-
Moriya (DM) [60,61] and Kitaev [54] interactions, all with
currently available experimental capabilities. Our proposal is
readily applicable in many experimental setups using atom
arrays, opening an alternative route for quantum simulation
of exotic quantum spin models.

II. THEORETICAL FORMALISM

Figure 1 illustrates the general concept of our method,
which is based on the interaction of atoms in an ordered array.
The atoms are excited to a manifold of two Rydberg states
with different parities, wherein they interact through resonant
dipole-dipole interactions [Fig. 1(a)]. Before any modulation
to the atoms, when considering the rotating wave approx-
imation and with a sufficiently large interatomic distance,
their interaction Hamiltonian is accurately captured by an XY
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FIG. 1. Generating arbitrary spin-exchange interactions between Rydberg atoms with Floquet engineering: concept illustration. (a) An
array of optically trapped atoms is excited to a manifold of two Rydberg states with different parities, which interact under a spin-exchange
Hamiltonian given in Eq. (1). Microwave pulses and ac Stark shift pulses are then periodically applied to the atom array to create the desired
effective interaction. (b) When a microwave pulse is applied to all Rydberg atoms simultaneously, it rotates the reference frame of their
interaction around the X or Y axis (an example for a rotation of the reference frame about the Y axis is shown in the figure). Such rotations
allow for an interaction along all three axes, with controllable magnitudes. (c) When an ac Stark shift is applied to a single atom via an optical
pulse, it creates a relative phase between the Rydberg ladder operators of that atom and its neighbors. This phase translates into a rotation
about the Z axis in the interaction reference frame, enabling control over the magnitude, sign, or symmetry of the exchange interaction. (d) An
example for a pulse sequence during one modulation period T . Global microwave modulation pulses (blue) are applied on all atoms. Local
optical modulation pulses (green) are applied on each atom separately and can occur simultaneously with global modulation or irrespective of
it. In between pulses, in the times marked t1, . . . , t5, the system evolves freely

Heisnberg spin exchange of the form [62]

HXY =
∑
i �= j

Ji j
(
σ x

i σ x
j + σ

y
i σ

y
j

) =
∑
i �= j

Ji j
0 (σ+

i σ−
j + σ−

i σ+
j ),

(1)
where σ x, σ y are the Pauli-X and Pauli-Y matrices; σ+ =
(σ x + iσ y)/2 and σ− = (σ x − iσ y)/2 are ladder operators in
the Rydberg manifold; i, j are indices representing atoms at
different array positions; and Ji j

0 = 2Ji j = C3/R3
i j is the bare

resonant-dipole-dipole interaction strength, which depends on
the interatomic distance Ri j and the Rydberg state-dependent
coefficient C3.

Throughout the paper, we assume that C3 is isotropic, im-
plying that an out-of-plane magnetic field is applied to the
atoms, though controlling the interaction anisotropy can add
further degrees of freedom for Hamiltonian engineering [45].
For simplicity, we consider only the nearest-neighbor interac-
tions in Eq. (1) and throughout the paper (i.e., J〈i j〉

0 = J0 and
Ji j

0 = 0 for i j �= 〈i j〉), which is a fairly good approximation
for the cases considered below (see Appendix F). It is fur-
ther possible to generalize our method to include interaction
between farther neighbors, or to use interaction mechanisms
with a shorter range [63,64].

To sculpt the interaction in Eq. (1) into a generic spin
exchange, we employ the concept of Floquet engineering
[55,56], which was successfully implemented in the past for
quantum simulation purposes, particularly to produce arti-
ficial gauge fields [23–25,65]. Floquet engineering involves
periodically modulating a physical system in time via an ex-
ternal drive, altering its Hamiltonian to the form H (t ) = H0 +
Hdrive(t ) = H (t + T ), where T is the modulation period and
H0 is the original, time-independent Hamiltonian (H0 = HXY

in our case).
By performing the modulation in the high-frequency

regime [56], which implies J0T � 2π in our case, we obtain

the effective Hamiltonian in the interaction picture

Heff = 1

T

∫ T

0
H̃ (t )dt + O(T ). (2)

In Eq. (2), H̃ (t ) = U †
drive(t )HXY Udrive(t ), where Udrive(t ) =

T exp[−i
∫ t

0 Hdrive(t ′)dt ′] (see Appendices A and B). The
leading-order correction to Heff , stated explicitly above, arises
due to noncommuting terms of H (t ) at different times within
the modulation period [55,56]. We note that higher-order cor-
rections to Heff decrease polynomially with T (see Appendix
A) and that Eq. (2) converts the problem of reaching an ef-
fective Hamiltonian, Heff , into the problem of engineering an
instantaneous Hamiltonian, H̃ (t ). To this end, we combine
two forms of external driving: a global modulation, applied
on all of the atoms simultaneously, and a local modulation,
applied on each atom separately.

Global modulation can be used to rotate the interaction
frame of reference [66], affecting the σ x, σ y operators in
Eq. (1) via the relation σ̃ x,y = ei�n̂·�σ σ x,ye−i�n̂·�σ , where n̂ is
the rotation axis, � is the rotation angle, �σ is the Pauli
matrix-vector, and σ̃ x,y are the rotated Pauli operators. The
instantaneous Hamiltonian after applying the global modula-
tion becomes

H̃ (t ) =
∑
i �= j

Ji j
(
σ̃ x

i σ̃ x
j + σ̃

y
i σ̃

y
j

)
. (3)

Such a modulation has been extensively explored in the
context of magnetic resonances in atoms [67,68] or solid-state
spins [69,70], and was recently applied for Floquet engineer-
ing of atoms in Rydberg states via microwave driving [58,66],
as illustrated in Fig. 1(b). It is worth noting that other methods
to perform global modulation of Rydberg atoms (in particular,
multiphoton Rydberg dressing) have been proposed [71,72] or
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demonstrated [73], resulting in a variety of effective Hamilto-
nians.

On the other hand, local modulation can be used to gen-
erate a relative phase �φi j between the ladder operators σ+,
σ− of neighboring atoms i and j. This may be achieved by
directly modulating the interaction energy [74] or by locally
detuning the energy level structure in a given site [75]. The lat-
ter was previously implemented via ac Stark shifts of Rydberg
atoms [59], as is illustrated in Fig. 1(c). This local modulation
results in the instantaneous Hamiltonian

H̃ (t ) =
∑
i �= j

Ji j
{

cos[�φi j (t )]
[
σ x

i (t )σ x
j (t ) + σ

y
i (t )σ y

j (t )
]

+ sin[�φi j (t )]
[
σ x

i (t )σ y
j (t ) − σ

y
i (t )σ x

j (t )
]}

. (4)

It is worth noting that the relative phase �φi j , termed the
Peierls phase in certain scenarios, is associated with an ef-
fective magnetic flux [76], enabling the simulation of unique
physical phenomena in and of itself, such as quantum gauge
fields [77] and fractional Chern insulators [78].

When combined, both modulations transform Eq. (1) to the
instantaneous interaction Hamiltonian

H̃ (t ) =
∑
i �= j

Ji j
{

cos[�φi j (t )]
[
σ̃ x

i (t )σ̃ x
j (t ) + σ̃

y
i (t )σ̃ y

j (t )
]

+ sin[�φi j (t )]
[
σ̃ x

i (t )σ̃ y
j (t ) − σ̃

y
i (t )σ̃ x

j (t )
]}

. (5)

The effect each modulation has on Eq. (1) is apparent from
Eq. (5): a global modulation can introduce coupling along
the z axis and controls the anisotropy between interaction
energies along different axes; while the local modulation can
change the sign of the coupling and turn the exchange from
symmetric to antisymmetric, as well as locally determine its
magnitude. Eqs. (2) and (5), therefore, imply that any desired
two-body spin-exchange Hamiltonian may be generated via
our method, given a suitable series of optical and microwave
pulses is applied to the atoms.

III. NUMERICAL ANALYSIS

The total modulation period of the system, as seen in
Fig. 1(d), is thus T = ∑

i ti + n�t , where �t denotes the
duration of an applied pulse, n is the number of applied pulses,
and ti, i = 1, 2, . . . , n + 1 are the free evolution times of the
system in between pulse applications. We numerically simu-
late the modulated atomic evolution within a single period via
the unitary UF , defined as

UF (t1, . . . , tn+1,�t ) = T exp(−i
∫ T

0
H (t )dt ), (6)

where H (t ) is the time-dependent Hamiltonian of Eq. (5)
and T is the time ordering operator. We implement the time
evolution of states using ED for small system sizes (with
the number of atoms L � 10), and using the time-dependent
variational principle (TDVP) [79,80] in an MPS framework
[81] for larger system sizes (L > 10), employing the ITENSOR

library [82]. In all of our MPS calculations, a bond dimension
of 50 is being used, which has been found to be sufficient for
the timescales at which the results are presented.

In the ideal Floquet engineering scenario, i.e., �t = 0,
reaching a target Hamiltonian HS is only a matter of de-

termining the free evolution times ti, controlling, in turn,
the coupling strength of different interaction terms. This
procedure inevitably depends on both the geometry and
boundary conditions of the system, while exhibiting inherent
errors stemming from higher-order corrections to the effec-
tive Hamiltonian picture or experimental errors due to noise
sources. Thus, it is important to design the pulse sequence
while employing dynamic decoupling schemes, which are
capable of mitigating both issues [83]. In all of our results
below, for the timescales shown, the dynamics induced by the
ideal Floquet engineering closely follows that of the target
Hamiltonian, allowing us to use it as a basis for comparison
with more practical scenarios.

In contrast to the ideal case, any practical Floquet engineer-
ing scenario includes pulses with a finite width, potentially
hindering the success of correct Hamiltonian engineering, as
the system continues to evolve during pulse application (see
analysis in Appendices E and G). Thus, determining the right
free evolution times becomes a more tasking problem, which
we solve by optimizing the sequence on a small number of
atoms through ED, before proceeding to MPS simulations. In
our optimization process, we minimize ‖U †

FUS − 1‖, where
US = exp(−iHST ) is the target time evolution unitary, thus
maximizing the similarity between the target and engineered
time evolution within a single modulation period.

In practice, our optimization is akin to minimizing the
higher-order corrections to the effective Hamiltonian picture
(see Appendix E). To quantify the influence of the higher-
order corrections, we define the unitary (U †

F )N (US )N , with
N = t/T being the number of modulation periods and de-
note its time-dependent eigenvalues by {exp[iθl (N )]}l=1,...,2L .
Deviations of θl from zero correspond to deviations of the
engineered unitary UF from the desired unitary US . We thus
define the average, time-dependent deviation

�θ (t ) =
√√√√ 1

2L

2L∑
l=1

θ2
l (t/T ), (7)

where {θl} ∈ (−π, π ]. The figure of merit in Eq. (7) gives
a quantitative measure for the time-dependent error in the
engineered Hamiltonian. Only in the small angle regime
(�θ � π ) can one say that the Hamiltonian was sufficiently
well engineered, yet this definition is not quantitative. We de-
fine here the coherence time of the engineered Hamiltonian as
the time it takes �θ to reach the value π/7, which corresponds
to a ten percent deviation of cos(�θ ) from unity.

Importantly, the main source of error in a practical scenario
stems from the way time-dependent Hamiltonian parameters
in Eq. (5) evolve during pulse application times �t . For sim-
plicity, and to show the robustness of our method, we chose
a square pulse leading to a linear change with time, although
such a pulse shape is known to be suboptimal. Further infor-
mation about the optimization process appears in Appendix
E.

In all simulations below, we consider every pulse width
in a practical case to be �t = 20 ns, while the bare atom-
atom interaction strength and modulation period are J0 = 2π

× 250 kHz and T ≈ 0.6 μs, respectively. Notably, all chosen
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FIG. 2. Engineering an effective Dzyaloshinskii-Moriya (DM) interaction between Rydberg atoms with a controllable magnitude. (a) Pulse
sequence required to generate the Hamiltonian in Eq. (8) with tunable Heisenberg and DM couplings on a ring of atoms. The pulse sequence
is applied simultaneously on each four-atom segment of the ring and involves only local modulation. Each pulse produces a rotation around
the z axis in the interaction reference frame, with a specific rotation angle. During the free evolution times of the sequence, the instantaneous
Hamiltonian of the system is either an XY (with positive or negative sign of the coupling) or a purely DM Hamiltonian. (b) Time-dependent
local magnetization 〈S̃x (t )〉 for J/D = 1, when the system is initialized in the zero-energy eigenstate |ψ0〉 and is thus expected to stay stationary.
Results are plotted for system sizes of 8 (blue), 24 (green), and 32 (orange) atoms, with dashed (solid) lines corresponding to a pulse sequence
with �t = 0 (�t = 20 ns). A graphic representation of the initial state in the x-y plane is given above the plot. (c) Same as (b), but for J/D = 0
(i.e., only DM interaction). (d) Same as (c), but for an initial state that is not an eigenstate, showing a fast decay of the local magnetization
〈S̃x (t )〉. A graphic representation in the x-y plane of the initial state used in (d) is given above the plot. The thick semi-transparent line
corresponds to dynamics under a static Hamiltonian fulfilling Eq. (8), agreeing very well with the Floquet-engineered dynamics. Insets in
(b) and (c) are the time-dependent coherence figure of merit �θ (t ), with the dashed (solid) line representing the result for an ideal (finite pulse)
modulation scheme. In (b)–(d), we assume the bare interaction strength between the atoms to be J0 = 2π × 250 kHz.

parameters are experimentally feasible [58,59] and ensure that
the high-frequency regime is satisfied (J0T � 2π ).

IV. DZYALOSHINSKII-MORIYA AND XY Z
INTERACTIONS VIA EITHER LOCAL

OR GLOBAL MODULATION

We begin exploring the capabilities of Hamiltonian engi-
neering using our method by generating the Dzyaloshinskii-
Moriya (DM) interaction between Rydberg atoms. The DM
interaction was initially discovered as the source of weak
ferromagnetism in certain antiferromagnets [60,61], and is an
antisymmetric interaction term of the form

∑
i �= j

�Di j · ( �σi ×
�σ j ), with �Di j being the interaction strength vector. It is a

direct manifestation of spin-orbit coupling [61], giving rise
to chiral magnetic solitons [84] such as magnetic skyrmions
[52,85,86], which hold great promise for applications in mag-
netic information processing and storage [87–89].

Typically, DM interaction is a weak effect in magnetic
materials compared to other effects, limiting the interaction
regimes one can naturally achieve. Hence, to explore the full
range of physical phenomena it can manifest, as well as the
consequent quantum magnetic phases [53,90–93], it is imper-
ative to not only generate DM interaction, but also to control
its strength relative to other interaction terms.

Figure 2 presents the engineering of an effective Hamilto-
nian with a controlled ratio of an in-plane (XY ) Heisenberg
interaction with strength J and an out-of-plane (Z) DM
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interaction with strength D, taking the form

HXY +DM =
∑
〈i, j〉

J
(
σ x

i σ x
j + σ

y
i σ

y
j

) + D
(
σ x

i σ
y
j − σ

y
i σ x

j

)
. (8)

We consider a 1D chain geometry with periodic boundary
conditions (i.e., a ring of atoms), and reach the target Hamil-
tonian of Eq. (8) using only local modulation. Figure 2(a)
presents the modulation sequence, which is applied simul-
taneously on every four-atom segment in the chain (see
Appendix F for the considerations in its construction). Other
than the applied modulation, the sequence consists of three
free evolution times, denoted as tJ , tD, and t−J , which are
used to determine the effective interaction strengths. In the
ideal case (�t = 0), the couplings in the effective Hamilto-
nian are given by J = J0(tJ − t−J )/2(tJ + t−J + tD) and D =
J0tD/2(tJ + t−J + tD), where J0 is the bare interaction strength
between the atoms. A detailed derivation of the ideal coupling
strengths for all models considered in this work is given in
Appendix C. The ratio J/D in the case of Eq. (8) can then be
tuned to any value between 0 and ∞.

To validate the effective Hamiltonian for a given ratio
J/D, we initialize the system in the state |ψ0〉 = V (J/D)|ψx〉,
where |ψx〉 denotes a ferromagnetic state along the x axis and
V (J/D) = ⊗L

l=1eil (φ/2)σ z
l , with φ = tan−1(J/D) + π . This

state is a zero-energy eigenstate of the Hamiltonian in Eq. (8)
and is different for any ratio J/D. Thus, it should remain
stationary in time only if the Hamiltonian was engineered
with the required value of J/D. The dynamics of this zero-
energy state, for J/D = 1 and J/D = 0, is shown in Figs. 2(b)
and 2(c), where we plot the local magnetization of the
time-evolved state |ψ (t )〉 with respect to the initial state |ψ0〉.
Namely, 〈S̃x(t )〉 = 1

L

∑L
l=1〈ψ̃ (t )|Sx

i |ψ̃ (t )〉, where |ψ̃ (t )〉 =
V −1(J/D)|ψ (t )〉.

In the ideal case we see no visible dynamics, as expected
from a perfectly engineered Hamiltonian. However, for a prac-
tical scenario with finite pulse widths, we see deviations of
the local magnetization with respect to the initial state, albeit
with a fairly long timescale, as 〈S̃x(t )〉 reduces to half of
its initial value when t ≈ 24J−1

0 for both cases considered.
The engineered Hamiltonian coherence time, as defined above
using �θ , was about 14J−1

0 for both cases considered. Thus,
the Hamiltonian is correctly engineered for times well above
the experimentally measured decoherence time of untrapped
Rydberg atoms [94,95], which is 15 μs at the most, or less
than 4J−1

0 for our chosen parameters.
We note that no significant dependence on system size is

observed in the dynamics (explored here for L = 8, 24, and
32, see Appendix G for more system sizes). We further verify
that the local magnetization decays very quickly when the
initial state is not an eigenstate of the engineered Hamiltonian,
showcasing the utility of |ψ0〉 for verifying that the correct
Hamiltonian was implemented. Thus, Fig. 2 illustrates that our
approach for Hamiltonian engineering is both practically pos-
sible and scalable, while providing engineered Hamiltonian
values beyond what is naturally possible in magnetic materials
(where D � J). We note that other Floquet-engineered sys-
tems are capable of the same achievement, such as dimerized
strongly interacting bosons in optical lattices [96].

FIG. 3. Engineering an effective XY Z Heisenberg Hamiltonian
in a Rydberg atoms array. (a) Pulse sequence required to generate the
XY Z interaction [58,66], termed the WAHUHA sequence in dynamic
decoupling theory [83]. Each pulse rotates the interaction frame of
reference for all atoms around either the x or y axes, such that during
each free evolution time period the instantaneous interaction is along
a different set of two axes. (b) Average z magnetization 〈Sz(t )〉
for Jx = Jy = Jz, when the system is initialized in a ferromagnetic
state along the z axis (illustrated above the plot). The initial state is
expected to be stationary [58]. Results are plotted for system sizes
of 8 (blue), 24 (green), and 32 (orange) atoms, with dashed (solid)
lines corresponding to a pulse sequence with �t = 0 (�t = 20 ns).
A graphic representation of the initial state in the x-z plane is given
above the plot. Inset is the time-dependent coherence figure of merit
�θ (t ), with the dashed (solid) line representing the result for an
ideal (finite pulse) modulation scheme. In (b), we assume the bare
interaction strength between the atoms to be J0 = 2π × 250 kHz.

For completeness we investigate the operation of global
modulations within our scheme, engineering an effective
XY Z interaction in a similar ring of Rydberg atoms, as has
been recently demonstrated experimentally [58]. The effective
Hamiltonian takes the form

HXY Z =
∑
〈i, j〉

Jxσ
x
i σ x

j + Jyσ
y
i σ

y
j + Jzσ

z
i σ z

j , (9)

where σ z
i is the Pauli-Z operator of the atom i and Jx, Jy, Jz

denote the coupling strength along each axis. The results of
Hamiltonian engineering appear in Fig. 3, and although the
pulse sequence is essentially the same as in [58,66] [Fig. 3(a)],
here we numerically optimize the free evolution times to com-
pensate for the finite duration of applied pulses in a practical
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FIG. 4. Engineering an effective Kitaev interaction between Rydberg atoms. (a) Pictorial representation of the Kitaev couplings. Different
α bonds are color-coded in the following way: blue (x-axis interaction); yellow (y-axis interaction); and red (z-axis interaction). The illustration
shows two plaquettes of the lattice, corresponding exactly to the simulated atomic system. (b) A heatmap of the z magnetization dynamics
〈Sz(t )〉 for all ten simulated atoms in the two plaquette system. In the target Hamiltonian, all interaction strengths in each direction are equal
(Jx = Jy = Jz = J0/3) and the initial state is ferromagnetic along the z axis. Three subplots are shown: dynamics with the target Hamiltonian
(US), dynamics with an ideal engineered Hamiltonian [UF (�t = 0)] and dynamics with an engineered Hamiltonian with finite pulse widths
(UF [�t = 20 ns)]. A yellow color represents positive magnetization and a blue color represents negative magnetization. (c) The same as (b),
but for an antiferromagnetic initial state. (d) Time-dependent coherence figure of merit �θ (t ), with the dashed (solid) line representing the
result for an ideal (finite pulse) modulation scheme. Similarly to Fig. 2, we assume here J0 = 2π × 250 kHz.

scenario. In the ideal case, Jx = J0
t1+t2

2(t1+t2+t3 ) , Jy = J0
t1+t3

2(t1+t2+t3 ) ,

and Jz = J0
t2+t3

2(t1+t2+t3 ) where t1, t2, and t3 are the free evolution
times defined in Fig. 3(a) and J0 is the bare interaction strength
between the Rydberg atoms [58]. Note that this pulse se-
quence dictates the relations Jx + Jy + Jz = J0 and Jx, Jy, Jz �
J0/2, which constrain the achievable anisotropy using global
modulation alone.

Figure 3(b) shows the magnetization dynamics of a system
engineered to have isotropic interaction (i.e., Jx = Jy = Jz).
We initialize the system in a ferromagnetic state along the z
axis [as shown above Fig. 3(b)] since the identifying feature
of this Hamiltonian is that a ferromagnetic state along any
axis (x, y, or z) is an eigenstate and should therefore remain
stationary. A similar behavior is achieved in the other fer-
romagnetic states as well, as is shown in Appendix H, along
with the magnetization dynamics for anisotropic interaction.

Contrary to the case of local modulation, even in the case of
ideal (infinitely short) pulses there is a visible increase in �θ

over time, even though no change in the local magnetization
can be observed. This is due to the existence of noncommuting
terms between instantaneous Hamiltonians in different times.
The engineered Hamiltonian coherence time in a practical
scenario is shorter than in the case of local modulation, and
stands at about 9J−1

0 . Notably, it is still much larger than
currently achievable decoherence times of Rydberg atoms, as
mentioned above. Interestingly, the magnetization reduces to
half of its initial value at a far larger timescale (t ≈ 30J−1

0 ).
The results of both local and global modulation, there-

fore, highlight that measuring magnetization dynamics of a
single state is not always a good method to verify Hamilto-

nian engineering. Additionally, the accuracy of Hamiltonian
engineering may be increased even when using suboptimal
pulses, by optimizing free evolution times (see Appendix E
for a comparison to the result with parameters in [58]).

V. KITAEV INTERACTION VIA COMBINED GLOBAL
AND LOCAL MODULATION

Finally, we combine both local and global modulation to
produce a generic spin exchange, specifically choosing the
Kitaev interaction [54]. As can be seen in Fig. 4(a), the Ki-
taev interaction is a direction-dependent spin exchange on a
honeycomb lattice, which can be written compactly as

HKitaev =
∑

α=x,y,z

Jα

∑
〈i j〉α

σ α
i σα

j , (10)

where 〈i j〉α denotes the nearest neighbors on the α bond.
The Kitaev honeycomb model is one of the hallmarks of
modern condensed matter physics and is analytically exactly
solvable. It is known to host a quantum spin liquid in its
ground state [97], and exhibits a quantum phase transition
when the absolute value of the interaction strength along one
direction exceeds the sum of the absolute value of the others.
Furthermore, applying a magnetic field in this model is known
to drive the system into a gapped quantum spin liquid with
nonabelian anyonic excitations [54].

While the search for magnetic materials that exhibit a dom-
inant Kitaev exchange is still ongoing [98–107], it is natural
to ask whether this type of interaction could be engineered,
to allow a more detailed investigation. In fact, two recent
proposals to do just that also rely on cold neutral atoms and
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a different form of Floquet engineering [108,109]. Our pro-
posal to engineer Kitaev interaction requires a complex pulse
sequence with a large number of parameters, and therefore,
the expression for the coupling parameters, along with the
details of the pulse sequence, are appended in the Appen-
dices C and H. It relies on the global modulation introduced in
Fig. 3(a), along with local modulation during and in between
the globally applied pulses. The results for simulations of
two plaquettes of the honeycomb lattice (ten atoms) are given
in Figs. 4(b) and 4(c). The figures show the dynamics of
the magnetization along the z axis for two different initial
states, one ferromagnetic and the other antiferromagnetic,
where the target Hamiltonian is a pure Kitaev interaction
with Jx = Jy = Jz = J0/3. These initial states were chosen as
simple, experimentally feasible examples, since no eigenstate
of this Hamiltonian is a product state. Similar dynamics, yet
in the other possible phase of the Kitaev model, are plotted in
Appendix G.

We compare the target Hamiltonian dynamics to those of
the engineered Hamiltonian, finding a good agreement be-
tween the results for all presented times (i.e., t � 12J−1

0 ), for
the application of either ideal or practical pulses. However,
when �θ is analyzed [Fig. 4(d)], the coherence time for the
engineered Hamiltonian is found to be about 4J−1

0 in the prac-
tical case and about 23J−1

0 in the ideal case. This relatively
low coherence, stemming from the combination of local and
global modulation, as well as the system geometry, is never-
theless sufficient for meaningful quantum simulation, and can
be extended by further optimizing the applied pulse shape or
the pulse sequence. The results in Fig. 4 serve to illustrate
that our method can indeed generate a generic spin-exchange
between Rydberg atoms.

VI. DISCUSSION

In summary, we proposed a method to simulate generic
spin-exchange Hamiltonians using Floquet engineering of
atom arrays, when combining both global and local temporal
modulation. Through numerical simulation, we demonstrated
the generation of DM and XY Z interactions for over 30 atoms
in a ring, and Kitaev interaction for ten atoms in two pla-
quettes of a honeycomb lattice. Rather than just consider an
idealized case, our simulations included currently achievable
experimental parameters [58,59], showing that our proposal
can be employed already in existing experimental setups.

In principle, our scheme is entirely scalable since the
length of the pulse sequence required for Hamiltonian engi-
neering scales only with the number of atoms interacting in
a single unit cell (e.g., a chain, a triangular lattice, a square
lattice, etc.), and not with the number of atoms (as can be
seen in Figs. 2 and 3). This is also true for the decrease in en-
gineered Hamiltonian coherence, as adding more interactions
for each atom increases the effect of higher-order corrections
to the effective Hamiltonian. It is further worth noting that
different engineered interaction terms experience decoherence
differently, as is evident from Figs. 2 to 4, implying that some
spin models will be easier to simulate then others. For local
modulation purposes, the number of addressing beams does
scale linearly with the number of atoms, but this is not out of
the ordinary in the field of atom arrays [110].

Our proposal then serves as an alternative route for univer-
sal quantum simulation of spin models [47], with the main
advantage being simplicity in design and implementation,
making it more accessible to a wider range of experimen-
tal systems. Its main disadvantages stem from the need to
modulate the system both locally and globally, limiting the
possible simulation time while exacerbating the risk of scat-
tering atoms out of the required Rydberg manifold. That being
said, both issues can be mitigated by carefully choosing the
parameters of the atomic system (Rydberg levels, energy de-
tunings, etc.), while requiring that it decoheres faster than
the engineered Hamiltonian (which is quite possible, as we
have shown). Ultimately, with improvements to the coherence
of Rydberg atoms [94] and an increase in modulation speed,
one can expect quantum simulation with our scheme to span
timescales wherein atoms undergo hundreds, or even thou-
sands, of interactions.

Finally, our method can readily be used for several other
Hamiltonian engineering functionalities, even though we do
not directly demonstrate them in this work. Using only global
modulation, for example, one can compensate for residual
van der Waals interaction between Rydberg atoms, potentially
enabling an XY model with faster interaction times [62]. On
the other hand, employing only local modulation can engineer
the ratio between nearest- and next-nearest-neighbor interac-
tions, a highly important parameter for models of frustrated
quantum magnets [97]. Furthermore, local modulation can
artificially produce a different functional dependence for the
interaction between the atoms, allowing a transition between
long-range and short-range interactions. Finally, using both
local and global modulation allows for the engineering of
three-dimensional Heisenberg and DM interactions, giving
rise to quantum magnetic topological solitons [53,90–93].
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APPENDIX A: EFFECTIVE HAMILTONIAN DERIVATION
FOR TIME-MODULATED RYDBERG-ATOM ARRAYS

As explained in the main text, we assume the atoms in the
array interact via resonant dipole-dipole interactions, which in
the nearest-neighbors approximation results in the interaction

053318-7



NAVEEN NISHAD et al. PHYSICAL REVIEW A 108, 053318 (2023)

Hamiltonian

HXY = 1

2

∑
〈i j〉

J0
(
σ x

i σ x
j + σ

y
i σ

y
j

)
, (A1)

where J0 is the bare interaction strength between the Rydberg
atoms and σ x

i , σ
y
i are the Pauli-X and Pauli-Y operators of

atom i, respectively. Therefore, when adding any modulation
to the system, the time-dependent Hamiltonian for the array
of Rydberg atoms can be expressed as

H (t ) = HXY + Hdrive(t ). (A2)

Here, Hdrive(t ) is a time-dependent, periodic modulation
[i.e., Hdrive(t + T ) = Hdrive(t )]. In the interaction picture, we
can define Udrive(t ) = T exp[−i

∫ t
0 Hdrive(t ′)dt ′], enabling a

description of the system in a rotating frame with the modula-
tion frequency. In the rotating frame, a state of the system can
be described by ρ̃(t ) = U †

drive(t )ρUdrive(t ), where ρ is a state
of the unperturbed system and the state ρ̃(t ) evolves under the
rotating frame Hamiltonian H̃ (t ) = U †

drive(t )HXY Udrive(t ).
Taking the stroboscopic approach, a unitary operator

U over one modulation period for the time-dependent
Hamiltonian is equivalent to a unitary operator of some time-
independent Hamiltonian HF over time T

U (T ) = exp[−iHF T ]. (A3)

HF is known as the Floquet Hamiltonian and it produces the
same dynamics at integer intervals of T as the time-dependent
Hamiltonian H̃ (t ). Using the Floquet-Magnus expansion [56],
HF can be written as

HF =
∞∑

n=0

H (n), (A4)

where the three lowest-order terms of Eq. (A4) being

H (0) = 1

T

∫ T

0
H̃ (t )dt = Heff , (A5)

H (1) = 1

i2T

∫ T

0
dt

∫ t

0
dt ′[H̃ (t ), H̃ (t ′)], (A6)

H (2) = − 1

6T

∫ T

0
dt

∫ t

0
dt ′

∫ t ′

0
dt ′′{[H̃ (t ), [H̃ (t ′), H̃ (t ′′)]]

+ [[H̃ (t ), H̃ (t ′)], H̃ (t ′′)]}. (A7)

Notably, the nth order in Eq. (A4) scales as (J0T )n. Thus, in
the high-frequency regime (J0T � 1), the zeroth-order term
H (0) is a good approximation for HF , with first-order correc-
tions scaling as T , as given in Eq. (2) of the main text.

APPENDIX B: INSTANTANEOUS HAMILTONIAN IN THE
ROTATED FRAME

We derive the expression for the Hamiltonian in the rotated
frame after applying a general combination of global and local
modulation. The influence of the global microwave modula-
tion on the Rydberg atoms, as verified in [58,66], acts as a
unitary of the form UGlobal = exp(i�

∑
j n̂ · �σ j/2) where n̂ is

the unit vector along the axis of rotation and � is the rotation
angle. The Hamiltonian in the rotated frame when considering

the global pulse is

H̃ (t ) = UGlobalHXYU †
Global (B1)

= 1

2

∑
〈i j〉

J0
[
σ̃ x

i (t )σ̃ x
j (t ) + σ̃

y
i (t )σ̃ y

j (t )
]
, (B2)

where σ̃ α = exp(i�n̂ · �σ )σα exp(−i�n̂ · �σ ). On the other
hand, the local modulation due to ac Stark shifts results
in rotation about the axis perpendicular to the plane of in-
teraction [59], which has the form Ulocal = exp(i

∑
j φ jσ

z
j ).

Transformed σ̃ x
j and σ̃

y
j operators under this unitary are

Ulocalσ
x
j U †

local = cos φ jσ
x
j + sin φ jσ

y
j , (B3)

Ulocalσ
y
j U

†
local = − sin φ jσ

x
j + cos φ jσ

y
j . (B4)

Thus the instantaneous Hamiltonian H̃ (t ) generated by the
modulation is

H̃ (t ) = UlocalHXYU †
local (B5)

=
∑
i �= j

Ji j
{

cos[�φi j (t )]
(
σ x

i σ x
j + σ

y
i σ

y
j

)

+ sin[�φi j (t )]
(
σ x

i σ
y
j − σ

y
i σ x

j

)}
, (B6)

and the Hamiltonian in the doubly rotated frame, including
both local and global modulations can be obtained using
H̃ (t ) = UGlobalUlocalHXY U †

localU
†
Global, giving exactly Eq. (5) in

the main text, where �φi j = φ j − φi, with i and j denoting
two different atoms.

APPENDIX C: DERIVING COUPLING STRENGTH FROM
PULSE SEQUENCE

Ideally, the coupling strength of individual terms in the
Floquet-engineered Hamiltonian is related to the free propa-
gation times within the pulse sequence. In the high-frequency
regime, which we consider here, all coupling strengths can
be derived using Eq. (A5) as the other higher-order terms
are negligible. We present the derivation for the parameters
J and D of the engineered Hamiltonian given in Eq. (8) of the
main text and explored in Fig. 2. The pulse sequence shown
in Fig. 2(a) of the main text incorporates three distinct free
propagation intervals, denoted as tJ , tD, and t−J , respectively.
Within these intervals, the system undergoes free evolution
governed by the XY interaction, the DM interaction and the
XY interaction with an opposite sign. Equation (A5) for this
pulse sequence is then

Heff = 1

T

∫ T

0
H̃ (t )dt = 2(tJ − t−J )HXY + 2tDHDM

T
, (C1)

which gives J = J0(tJ−t−J )
2(tJ+tD+t−J ) and D = J0tD

2(tJ+tD+t−J ) . By doing a

similar analysis for the XY Z model [Eq. (9) of the main text],
the coupling strengths are Jx = J0

t1+t2
2(t1+t2+t3 ) , Jy = J0

t1+t3
2(t1+t2+t3 ) ,

and Jz = J0
t2+t3

2(t1+t2+t3 ) . Similarly, for the Kitaev case, the pulse

sequence is shown in Fig. 14 and the coupling parameters, as
given in Eq. (10) of the main text, are Jx = Jy = 2J0(t1−t2 )

T and
Jz = J0/3.
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FIG. 5. Dependence of the engineering accuracy of XY Z inter-
action on the bare Rydberg-atom interaction strength. The curves
show the �θ parameter after a single modulation period for both
ideal modulation (�t = 0 ns) and practical modulation (�t = 20 ns)
with the symmetric pulse sequence described in Fig. 3 of the main
text and agree very well with a second-order polynomial function.
The contribution of the quadratic term to the error is by far the
most dominant in both cases. The assumed modulation period was
T = 600 ns.

APPENDIX D: MITIGATING ERRORS IN EFFECTIVE
HAMILTONIAN ENGINEERING

First and foremost, should the engineered and initial
Hamiltonians commute with each other (i.e., [HXY , HF ] = 0),
then all higher-order corrections are nullified for ideal modu-
lation (i.e., with infinitely short pulses). Such is the case in our
scheme when using only local modulation (see Fig. 2 in the
main text) since the symmetric XY Heisenberg and antisym-
metric Z DM interactions fully commute. In contrast, when
attempting to use the global modulation to produce an XY Z
Heisenberg or Kitaev interaction (as in Figs. 3 and 4 of the
main text), the Hamiltonians do not inherently commute, and
higher-order corrections arise. Thus, using local modulation
in our scheme is fundamentally more robust than using global
modulation.

For an ideal modulation and in the high-frequency regime,
constructing a symmetric pulse sequence cancels the first-
order correction H (1) to the effective Hamiltonian [83]. For
this reason, all pulse sequences used in this work are sym-
metric (see additional considerations below). We verified that
such is indeed the case by simulating the �θ parameter
for a single modulation period generating the XY Z Hamil-
tonian, as a function of J0 (Fig. 5). �θ , as defined in the
main text, gives a quantitative measure for the high-order
corrections to the effective Hamiltonian. As expected from
Eqs. (A5) to (A7), a quadratic dependence on J0 is observed,
illustrating that second-order corrections dominate. Intrigu-
ingly, this scaling occurs even for practical modulation and
when the high-frequency regime is not strictly applicable. We
note that second-order, and even higher-order corrections to
the effective Hamiltonian, can be nullified by an appropriate

200 300 400 500 600
T (ns)

0.00

0.02

0.04

0.06

0.08

0.10

Δ
θ/

π

Jx = Jy = Jz J0 = 2π 250 kHz

Δt = 0 ns

Δt = 20 ns

FIG. 6. Dependence of the engineering accuracy of XY Z inter-
action on the modulation period. The curves show the �θ parameter
for the ideal modulation (�t = 0 ns) and practical modulation (�t =
20 ns), considering the symmetric pulse sequence described in Fig. 3
of the main text. In the ideal case, the error scales as a second-order
polynomial in T , as expected from Eqs. (A5) to (A7) for symmetric
pulse sequences. In the practical case, however, a convergence to a
constant, modulation-period-independent error is observed, owing to
the nonvanishing pulse application time. The assumed bare Rydberg-
atom interaction strength was J0 = 2π × 250 kHz.

modulation scheme [83], at the cost of a more complex pulse
sequence.

For a more practical modulation scheme, where applied
pulses have finite widths, additional errors can accumulate and
change the dependence of Hamiltonian engineering accuracy
on the modulation period T . This is a direct implication of
the nonvanishing pulse width �t , as reducing T decreases the
relative time the system freely evolves. A demonstration of
this behavior is given in Fig. 6, by plotting the �θ parameter
against the modulation period for a single modulation cycle
generating the XY Z Hamiltonian. As suggested above, the
dependence is quadratic in the ideal case, but in the more
practical case a pulse-width-dependent threshold is apparent,
below which the accuracy of the engineered Hamiltonian does
not improve. In our simulations, we opted to work with the
smallest modulation period in which the practical and ideal
modulation converged in their dependence (T = 0.5–0.6 μs
for our chosen parameters). In addition, further optimization
of the pulse sequence itself can assist in generating the Hamil-
tonian more accurately, as discussed below.

APPENDIX E: PULSE SEQUENCE
OPTIMIZATION PROCESS

We assume that the modulation period in the practical case
is made up of n pulses of width �t and free evolution times ti,
i = 1, 2, . . . , n + 1. We treat the pulse widths as constant (as
they are usually an experimental constraint) and optimize the
free evolution times ti to minimize the quantity ‖U †

FUS − 1‖,
as defined in the main text. Through the relation between
‖U †

FUS − 1‖ and the �θ parameter, it is clear that minimizing
one minimizes the other, and we thus present the visualization
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FIG. 7. Visualization of the optimization process for practical Floquet engineering. Heat maps depicting optimization of free evolution
times to engineer only DM interaction (left panel), equal strength of XY and DM interaction (middle panel) and an isotropic XY Z interaction
(right panel) are shown above. The optimal point (dark blue) is the position of minimal �θ for a single modulation period. The visualization
is two-dimensional since both engineering schemes have only two independent free evolution times. Left and middle panel optimize over
tJ , t−J , while the right panel optimizes over t1, t2 (these parameters are defined in the main text). In all the cases presented here T = 600 ns,
�t = 20 ns, and J0 = 2π × 250 kHz. It is clear that the nonzero value of �t alters the optimal free evolution times from their ideal values. For
example, one would expect tJ = t−J to fully cancel out the XY interaction or that t1 = t2 will lead to isotropic XY Z interaction. However, that
is not the case when the system evolution during pulse application is considered as well.

of our optimization in terms of �θ after one modulation
period. Notably, 0 � ti � T − n�t , constraining the maximal
free evolution time, so our optimization spans each ti in values
ranging from 0 to T − n�t while satisfying the condition for
the total modulation period stated in the main text. Figure 7
illustrates the variation of �θ for three examples given in
Figs. 2 and 3 in the main text, which conveniently have only
two free parameters, allowing a 2D heatmap to visualize the
optimal parameters. Noticeably, the optimized parameters are
different from their value in the ideal pulse sequence with
�t = 0 due to the effects of system evolution during the pulse
application time �t .

The importance of optimizing both the total modulation
period and the pulse sequence itself is illustrated in Fig. 8,
where we compare the optimal parameters we reached to
engineer an XY Z interaction between Rydberg atoms and
the parameters used in the recent experimental demonstration
[58]. For the same modulation period, it is clear that the
optimized parameters slightly increase the coherence time of
the engineered Hamiltonian, extending it by ≈ J−1

0 . A greater
effect, as could also be predicted by Fig. 6, is achieved by dou-
bling the modulation period, which extends the Hamiltonian
engineering coherence time by a factor of 2. Thus, the time
frame for quantum simulation using our scheme can be greatly
extended by appropriately optimizing the modulation. We also
note that no optimization was performed for the pulse shapes
themselves, which can vastly improve the current results (as
stated in [58] and also explored in many other works, e.g.,
[111]) and eliminate many errors in the practical case, bring-
ing the result much closer to the ideal Hamiltonian coherence
times.

APPENDIX F: EFFECT OF NEXT-NEAREST-NEIGHBOR
INTERACTION

As mentioned in the main text, our simulation model con-
siders only nearest-neighbor (NN) interactions for simplicity
of the calculations. That said, the resonant dipole-dipole in-
teraction between Rydberg atoms is highly nonlocal (decays
as 1/R3), and it is essential to check that including the

higher-order interactions does not significantly change our
results. We therefore perform a simulation including the
next-nearest-neighbor (NNN) interactions, as it applies to the
generation of Dzyaloshinskii-Moriya interactions in a ring of
atoms (similarly to Fig. 2 in the main text).

The simulation results are summarized in Fig. 9, where it
is directly visible that the experimental observable (the aver-
age magnetization) remains unchanged. The NNN interaction

FIG. 8. Comparison of optimized and nonoptimized pulse se-
quences. The figure shows the time-dependent �θ parameter as a
function of time for three different pulse sequences. First, a short,
nonoptimized pulse sequence (blue) whose parameters are the same
as in the experimental demonstration [58], producing XY Z interac-
tion on a ring of Rydberg atoms. Second, a short, optimized pulse
sequence (orange), demonstrates ≈ J−1

0 increase in the coherence
time of the engineered Hamiltonian (an increase of 20%). Lastly, a
longer, optimized pulse sequence virtually doubles the engineered
Hamiltonian coherence time, which is the same factor by which
the modulation period T was extended (a 100% increase). This
figure illustrates that taking into account the errors of practical Flo-
quet engineering parameters can greatly extend quantum simulation
times.
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FIG. 9. Effect of next-nearest-neighbor interaction on the engineering of Dzyaloshinskii-Moriya interaction between Rydberg atoms. The
simulation is similar to the one performed in Fig. 2(c) of the main text, calculating the average local magnetization change while including the
next order of the long-range interaction between Rydberg atoms (middle panel). The result in Fig. 2(c) is given in the left panel for comparison.
The right panel compares the time-dependent �θ in both cases, for either an ideal or a practical modulation scheme. The parameters for these
simulations were T = 600 ns and J0 = 2π × 250 kHz.

does, however, change the magnetization dynamics for ideal
floquet engineering, and affects the coherence of the engi-
neered Hamiltonian, as can be seen in the time dependence
of �θ . Not only is it a very dominant effect, overtaking the
influence of the finite pulse length �t , but it also degrades
the Hamiltonian coherence. Therefore, one can surmise that
the magnetization dynamics for a general initial state may
not be as similar. That said, the Hamiltonian still remains
coherent for times far longer than the Rydberg coherence time,
given the parameters considered, such that the effect of NNN
interaction on experiment is currently limited.

Since interactions over an even longer range are at least
three times weaker than the NNN, we believe this simu-
lation validates the accuracy of the simulations performed
throughout the main text and their relevance in supporting
experimental endeavors. Even so, should higher-order inter-
action terms ever become an issue, it is essentially possible to
include both control of NN and cancellation of NNN interac-
tion in the Floquet engineering pulse sequence, at the cost of
increased complexity (a longer modulation period, as well as
additional local modulation pulses).

APPENDIX G: GENERAL CONSIDERATIONS
FOR PULSE SEQUENCE STRUCTURING

As mentioned above, all pulse sequences appearing in
this paper are inherently symmetric, greatly reducing the
first-order corrections to the effective Hamiltonian picture.
Otherwise, two other considerations were employed when
constructing pulse sequences for the various engineered inter-
actions: the symmetry of the Hamiltonian, as derived from the
system geometry and the boundary conditions of the problem.

The geometry of the system, when assuming a periodic
array, constrains the number of interacting atoms in each of
the array’s unit cells. Hence, the need to engineer the inter-
action between all of the atoms in the unit cell constrains
the number of pulses required. A good example for scaling
with the number of atoms in a unit cell, which is a geometry-
dependent property, is given by the sequence used to engineer
a DM interaction in a 1D geometry (as in Fig. 2 of the main

text), as opposed to a triangular 2D geometry (as shown in
[57]). At any rate, it is important to note that, even if the
required resources (i.e., number of addressing fields and their
power) scale with the number of atoms, the length of the pulse
sequence does not, such that our scheme is indeed scalable.
Several examples were already given in the main text, and
we append a more detailed investigation of one of them here
(Fig. 10).

The boundary conditions, on the other hand, do not change
the number of applied pulses but can require additional re-
sources. For example, DM interaction in a 1D geometry with
open boundary conditions would require only two-atom seg-
ments, instead of the four-atom segments used for closed

0.0 2.5 5.0 7.5 10.0
t(in units of J−1

0 )

0.0

0.1

0.2

0.3

0.4

0.5

〈S̃
x
(t

)〉

J/D = 0

L = 4

L = 8

L = 12

L = 16

L = 20

L = 24

L = 28

L = 32

FIG. 10. Scaling up quantum simulation with Floquet engi-
neering. The figure shows the local magnetization dynamics of a
zero-energy eigenstate in a ring of L atoms, undergoing the modu-
lation shown in Fig. 2 of the main text. The atom number ranges
from 4 to 32, in multiples of 4. Aside from boundary effects for low
L, the dynamics of the system remain virtually unchanged. Thus, it is
proven that our method for Floquet engineering is indeed scalable to
many atoms. The parameters for these simulations were T = 600 ns,
�t = 20 ns, and J0 = 2π × 250 kHz.
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FIG. 11. Effect of changing the bare Rydberg interaction strength J0 on the engineered Hamiltonian coherence time and magnetization
dynamics. As J0 increases, the magnetization decays faster and the decoherence time, fulfilling the condition �θ = π/7, decreases. This is a
direct result of exiting the high-frequency regime of Floquet engineering. For J0 = 250 kHz (blue curves), the results are as in the main text
(Fig. 3). For J0 = 350 kHz (orange curves), the Hamiltonian remains coherent up to t ≈ 5J−1

0 , in accordance with the quadratic dependence
of the coherence on J0, established in Fig. 5. Additionally, there is still a visible difference between ideal and practical modulation. For
J0 = 500 kHz (green curves), we are completely out of the high-frequency regime, and the practical and ideal cases appear to have the same
dependence on �θ and a coherence time less than J−1

0 . This shows that controllable quantum simulation in our scheme is only possible in the
high-frequency regime. The pulse width in the simulations was taken as �t = 20 ns.

boundary conditions in Fig. 2 of the main text, shortening
the pulse sequence by half. Specifically, in this example, this
change is necessary to correctly engineer the interaction be-
tween the first and last atoms of the 1D chain. We stress that,
while the pulse sequences presented in this work are sufficient
for meaningful quantum simulation, we do not claim that they
are necessarily the most efficient in the number of applied
pulses, and there may yet be more possible optimization in
this regard.

APPENDIX H: HAMILTONIAN-SPECIFIC
CONSIDERATIONS FOR PULSE SEQUENCE

STRUCTURING

Aside from the general considerations laid out above, the
pulse sequences we used had task-specific considerations. In
the case of engineering an XY Z interaction, the considerations
are the same as those in [58,66], and the same sequence was
used both for comparison and for simplicity, even though
it does not allow to engineer a general anisotropy between
the coupling strength in different axes. We chose a feasible
value of the bare Rydberg-atom interaction strength J0 in the
simulation, though it should be noted that higher J0 values are
possible, at the cost of reducing the engineered Hamiltonian
coherence time (see Fig. 11).

It is also important to note that optimizing the pulse se-
quence according to the �θ parameter instead of the dynamics
of a single initial state was crucial to achieve correct Hamil-
tonian engineering, as is exhibited by the similar dynamics
of the three degenerate zero-energy eigenstates in the case of
Jx = Jy = Jz (Fig. 12). This is further exemplified in Fig. 13,
where the dynamics of the zero-energy state for an anisotropic
XY Z interaction is simulated. At first glance, the dynamics
appear very close to the ideal case, suggesting a long coher-
ence time, yet the �θ parameter proves that this behavior is

only state specific, and the engineered Hamiltonian is only
coherent for a time t ≈ 3J−1

0 .
In the case of engineering DM interaction, the free evo-

lution time t−J was necessary to allow cancellation of the
Heisenberg coupling strength J and span the J/D ratio be-
tween 0 and ∞. Furthermore, the constraint for four-atom

FIG. 12. Influence of choosing different initial states on demon-
strating zero-energy eigenstate dynamics in the engineered XY Z
interaction. Each curve shows the magnetization dynamics of a ferro-
magnetic state initialized along a different axis when engineering an
isotropic XY Z interaction Hamiltonian. Ideally, the curves should all
coincide, yet the pulse widths in a practical modulation scheme cause
some variance in their behavior. That said, the magnetization decays
in a fairly similar fashion in all curves, which is a result that could
only be achieved when optimizing the engineered Hamiltonian (e.g.,
through the �θ parameter) instead of the dynamics of a single state.
The parameters for these simulations were T = 600 ns, �t = 20 ns,
and J0 = 2π × 250 kHz, the same as in Fig. 3 of the main text.
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FIG. 13. Engineering anisotropic XY Z interaction between Ry-
dberg atoms. The figure shows an anisotropic XY Z interaction in a
ring of atoms, with the system initialized to a ferromagnetic state
along the z axis. The initial state is a zero-energy eigenstate of the
Hamiltonian, and should thus, ideally, exhibit no dynamics. In prac-
tice, the magnetization in the system decays slowly, reaching half of
its initial value at t ≈ 14J−1

0 . However, the Hamiltonian coherence
time is much shorter (t ≈ 3J−1

0 ). We attribute this to a secondary
effect of the pulse width �t , as larger anisotropy requires some of
the free evolution times to become very short, thus accruing more
errors. (As was also exemplified in Fig. 6. The parameters for these
simulations were T = 600 ns, �t = 20 ns, and J0 = 2π × 250 kHz,
the same as in Fig. 3 of the main text (though the optimized pulse
sequence is different).

segments, arising from the required boundary conditions, also
limits the number of atoms that may exhibit a zero-energy
eigenstate for a certain J/D ratio. Thus, the two cases pre-
sented in Fig. 2 of the main text (J/D = 0 and J/D = 1) are
the only two J/D ratios that have a zero-energy eigenstate in
an eight-atom ring.

In the case of Kitaev interaction, the constraints are many
and varied, resulting in two possible pulse sequences, both of
which are illustrated in Fig. 14. These sequences are based
on the global modulation generating an XY Z interaction (see
Fig. 3 of the main text), and make use of local modulation to
produce position-dependent interactions along specific axes.
Thus, in the nearest-neighbors approximation, one only needs
to control the XY Z interaction strengths via the global mod-
ulation, while forcing the operators of two adjacent atoms to
be in-phase when interacting along the preferred axis or π

out-of-phase at any other time. This is illustrated in Fig. 14(a),
where local modulation is applied only during global modula-
tion. This scheme, used to generate the results in Fig. 4 of the
main text, also has the unexpected added value of nullifying
next nearest-neighbors interaction. We note that, by adding a
detuned microwave drive in the Rydberg manifold while the
pulse sequence in Fig. 14(a) is applied, it is possible to cre-
ate the effective magnetic field required to generate anyonic
excitations in the Kitaev model [54].

That said, the pulse sequence in Fig. 14(b) suffers from the
same limitation described above for the XY Z interaction: it is
limited in the possible anisotropy of the coupling strengths.
In fact, the limit is exactly the transition point between the B

FIG. 14. Pulse sequence for engineering the Kitaev interaction
(defined in the main text). (a) Global modulation is applied sim-
ilarly to generating an XY Z interaction, with each pulse rotating
the interaction frame of reference for all atoms around either the
x or y axes, such that during each free evolution time period, the
instantaneous interaction is along a different set of two axes. at any
given free evolution, the relative phase between the ladder operators
of two adjacent atoms is shifted simultaneously with the global
modulation through local modulation pulses, which rotate along the z
axis. Thus, the interaction along unwanted axes cancels out, and each
set of two atoms interact only along a single axis, as defined by the
Kitaev Hamiltonian. This pulse sequence carries the same limitation
on the interaction strength anisotorpy as the sequence creating the
XY Z interaction (i.e., |Jk | � 2(|Jl | + |Jm|), k, l, m ∈ x, y, z), which
is exactly the condition for the B phase of the Kitaev model [54].
(b) To exceed the anisotropy afforded only by the global modula-
tion, we design another pulse sequence that deliberately reduces the
interaction strength along two predefined axes, via additional local
modulation pulses. Thus, any required anisotropy can be designed,
enabling the simulation of the A phase of the Kitaev model as well.
Blue pulses represent global modulation, acting simultaneously on
all of the atoms, while green pulses represent local modulation,
applied to each atom separately.

and A phases of the Kitaev model [54]. To allow full access
to the Kitaev model, we also include a more complex pulse
sequence, illustrated in Fig. 14(b), whereby local modulation
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FIG. 15. Engineering the A (gapped) phase of the Kitaev model. The simulation shows magnetization dynamics along the z axis in color
coding, where the vertical axis is the atom number, as defined in Fig. 4 of the main text. We utilize the pulse sequence in Fig. 14(b) to
produce interaction along the z axis that is five times larger than along x or y (strictly speaking, the A phase requires only a ratio larger than
2). The initial states considered here are the same as in Fig. 4 (top: a ferromagnetic state along z; bottom: an antiferromagnetic state along
z). In the ideal case the dynamics is virtually the same as in the actual Kitaev model. However, for a practical modulation with pulse widths
�t = 20 ns, the dynamics follow that which is prescribed by the Kitaev Hamiltonian only until t ≈ 3J−1

0 . The parameters for these simulations
were T = 580 ns, and J0 = 2π × 250 kHz, the same as in Fig. 4.

pulses in between global modulation pulses assist in achieving
an arbitrary anisotropy of the interaction strengths (at least
in theory). Since the pulse sequence in Fig. 14(b) requires
the application of more pulses, and we constrain the modu-
lation period T to remain the same, its results are degraded

compared to those appearing in the main text, as can be
viewed in Fig. 15. Nevertheless, the engineered Hamiltonian
is still able to follow the required dynamics for t ≈ 3J−1

0 ,
which is only slightly below the current Rydberg coherence
time (4J−1

0 at the most in our chosen parameters).
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